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Existing analyses of the very low Reynolds number Stokes jet, e.g. Birkhoff & 
Zarantonello (1957) and Porste (1963), have been confined to a single-component 
fluid satisfying the usual zero-slip boundary conditions at a solid surface. In  
contrast, the low Reynolds number biological jets which emerge from the pores 
and channels at the secreting surfaces of numerous human, animal and insect 
organs entail the movement of water and solute subject to novel boundary 
conditions that arise from the local osmotic driving forces at  the secreting surfaces. 
These boundary conditions introduce a nonlinear coupling between the fluid 
momentum and solute conservation equations. This paper first discusses the 
fundamental dimensionless groups and length scales that characterize these 
biological jet flows and then examines in detail, using the technique of matched 
inner and outer expansions, one flow situation important in epithelial membrane 
transport, namely, the two-dimensional mixing of an inhomogeneous jet with 
a quiescent outer bathing solution which is bounded by a semi-permeable mem 
brane in the plane of the exit. The paper concludes with a discussion of other 
physiologically relevant problems which arise from different orderings of the 
length scales, and different overall geometrical configurations and flow conditions. 

1. Introduction 
Laminar and turbulent jet mixing problems a t  high Reynolds number have 

long been of interest to fluid mechanicians because of their numerous applications 
in both compressible and incompressible flows. Low Reynolds number jets, on 
the other hand, have had relatively few applications and those studies that have 
been conducted have been for highly idealized flow situations. One area of im- 
portant application for low Reynolds number jets that has been largely overlooked 
by fluid mechanicians is biological flow. Unfortunately, the idealized models of 
Stokes jets that have been analysed have little relevance for biological flows since 
these models treat a pure fluid rather than a two-species continuum of water and 
solute and do not consider biologically meaningful boundary conditions. A rather 
extensive variety of jets mixing with both stagnant and well-stirred outer bathing 
solutions will need to be examined in the future. The present paper examines in 
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FIGURE I .  Schematic diagram of exit mixing region adjacent to epithelial cell layer. 

detail only one particularly simple biological jet flow problem, namely the 
mixing of an inhomogeneous effluent from a single two-dimensional channel with 
a quiescent outer bathing solution occupying a half-plane which is bounded by 
a semi-permeable osmotic membrane in the plane of the exit that allows the 
passage of water but not solute. The particular application of interest to the 
authors is the mixing that ensues a t  the exit of the extracellular channels that 
Characterize epithetical cell layers, see figure 1. 

The qualitative behaviour of biological jets is much more subtle than that €or 
single-component Stokes jets since it involves the interaction between several 
different transport processes that can occur on the same or different length scales 
depending on the relative values of the five different dimensionless groups a/v, 
a/D, N,Co/p, pa/PwCoh and llh that characterize the particular flow problem. 
Here a is the total volumetric efflux per unit channel dept and is defined as 

where u, is the streamwise velocity component at x = 0; u, dy, 

u is the kinematic viscosity; D is the mass diffusivity coefficient for solute in 
water; p is the total mass density; M, is the solute molecular weight; C,, is the 
solute molar concentration in the interior of the cells which comprise the cell 
layer. The cell interior is usually assumed to be well mixed and hence the con- 
centration Go is assumed to be uniform throughout the cell and is taken to be 
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the characteristic reference concentration for the problem. Pw is the water per- 
meability coefficient of the semi-permeable outer membrane of figure 1 and has 
units of g/s cm2 per mole/ml; h is the channel height and 1 the channel spacing if 
an array of channels is considered. a/v is therefore an exit Reynolds number, a/D 
a ratio of convective to diffusional solute flux, MsCo/p a solute-solvent density 
ratio, pa/PwCoh a ratio of the channel efflux to the local passive water flux at  the 
boundary and l/h a dimensionless channel spacing. Typical values of these 
dimensionless numbers for epithelial membrane problems are 

In general two characteristic lengths other than 1 and h are possible for low Re 
jets with a /v  < 1 : D/Uo, where Uo is the channel centre-line velocity a t  the exit, 
and pa/PwCo. The length scale D/Uo is a measure of the distance from the source 
at which the convective and diffusional terms in the solute conservation equation 
become of comparable magnitude and thus does not appear if u/D < O( 1) since 
there is then no inner length scale in which the solute transport is convection 
dominated. The length scalepa/P,C, is a measure of the distance from the channel 
exit at  which the osmotic water flux a t  the boundary becomes comparable with 
the local convective flux due to the exit source. From the typical values given in 
the last paragraph one concludes that there are three important characteristic 
lengths for the two-dimensional jets emanating from the extracellular channels of 
epithelial membranes, and that these lengths are ordered as h < pa/PwCo < 1. 

The present analysis shows that on the inner scale h the osmotic movement 
of water across the outer membrane (0, in figure 1) is a higher order effect and the 
primary transport process is the diffusional relaxation of the inhomogeneity in 
the exit concentration profile. On the intermediate scale pa/PwCo the osmotic 
water flux Q, at the outer boundary is important and causes first-order changes 
in the streamline pattern and higher order convective corrections in the con- 
centration distribution. On the largest length scale I the flow problem is essentially 
that of a slow viscous flow with a periodic water flux boundary condition in the 
plane of the channel exits, assuming that the latter are equally spaced. The present 
paper will be concerned with obtaining matched asymptotic solutions which are 
uniformly valid on the first two length scales. Thus, the solutions on the length 
scales h and pa/PwC, will be referred to as the near and far fields respectively 
throughout the remainder of the paper. This two-region problem can also 
obviously be viewed as the exit mixing problem for a single isolated biological 
channel flow. 

In  concluding this section we shall briefly outline the physiological context 
of the exit jet problem for epithelial cell layers. The interested reader is referred 
to Stein (1967) and Bittar (1970) for a general survey of the physiological function 
of the various epithelial cell layers. These cell layers line the surfaces of many 
human, animal and insect organs such as the ciliary body of the eye, gall bladder, 
frog skin, avian salt gland and renal collecting tubule, to mention a few, and 
have the primary function of transporting water and solutes between the serosal 
fluids in the capillary beds and the mucosal fluids in the lumen or cavities of 
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these organs. In  organs which concentrate solutes, the direction of flow is 
reversed, e.g., in the gall bladder and the proximal tubule in the kidney. Physio- 
logists have for many years sought to explain the intriguing ability of these 
epithelia to produce flow of water and solute against or in the absence of electro- 
chemical driving forces between the mucosal and serosal bathing fluids. It now 
appears, as a result of electronmicroscopic studies, experimental measurements of 
in vivo and in vitro membrane transport rates and newly developed mathematical 
hydrodynamic diffusion models (Diamond & Bossert 1967; Weinbaum & Gold- 
graben 1972), that the unique features of epithelial transport are due to the 
specialized nature of epithelial ultrastructure and to the presence of trans- 
membrane and localized driving forces. These studies have shown that transport 
across the cell layer occurs via long narrow extracellular channels that are 
clearly visible in electronmicrographs. In  some epithelia., such as those found in 
the ciliary body, the channels are open at  both ends and appear to provide a direct 
link between the serosal and mucosal fluids. A schematic representation of a ciliary 
body extracellular channel is shown in figure 2. In other organs, for example, the 
gall bladder, the channels possess impermeable total occlusions at their mucosal 
ends. 

The spacing between the generally prismoidally shaped epithelial cells estab- 
lishes the height of the extracellular channels. The channel width has dimensions 
which are typical of a cross-sectional dimension of the cell and is several orders 
of magnitude larger than the height. A two-dimensional formulation for channel 
flow is therefore appropriate for the types of epithelia considered. The Diamond & 
Bossert (1967) model uses a cylindrical pore geometry. In Weinbaum & Gold- 
graben (1972), a detailed two-dimensional hydrodynamic diffusion model is 
formulated and solved to determine the solute concentration, velocity and 
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pressure distributions which develop within both open and closed extracellular 
channels under the influence of hydrostatic, local and transmembrane osmotic 
driving forces. Local osmotic driving forces are produced when metabolically 
related solute ion pumps create localized regions of high solute concentration 
within the extracellular channel. Water then flows passively from the cell 
interior into the channel across the essentially semi-permeable lateral membrane. 
The solution for the channel flow just described provides the initial condition a t  
the channel exit on the concentration and water flux for the jet mixing problem 
treated herein. 

Sections 2 and 3 contain, respectively, the far- and near-field solutions. 
Numerical results are presented in $4 and a brief discussion of additional areas 
in which biological jet theory might be applied is presented in $ 5 .  

2. Far-field solution 
The governing equations for the far field are the Navier-Stokes momentum 

equation written in terms of the vorticity w = V x u to eliminate the pressure 
term, a continuity equation for the incompressible fluid and a solute conservation 
equation. In vector form these are, respectively, 

u . v w  = VVZW, (2.1) 

v . u  = 0, ( 2 . 2 )  

-Bv~c+u.vc  = 0, (2.3). 

where u is the bulk fluid velocity and C is the solute concentration. 
On the length scale of the far field the Stokes jet emerging from the channel 

exit appears as a point source of strength a, located at  the origin of the polar 
co-ordinate system ( r ,  0) shown in figure 1. The radial and circumferential velocity 
components are then both of the order of the convective velocity from the source. 
From the work of Birkhoff & Zarantonello (1957), the radial velocity in a two- 
dimensional Stokes jet which satisfies a no-slip boundary condition is of order air. 
Equations (2.1)-(2.3) are therefore non-dimensionalized by defining the dimen- 
sionless variables 

where u and v are the velocity components in the r and 0 directions respectively 
and are related to the two-dimensional stream function $ by 

k is used to represent the outer length scale pa/PwCo and f is a dimensionless 
stream function. All quantities defined in (2.4) are of order unity. 

Substitution of (2.4) into (2 .5)  yields 
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where asterisks in ( 2 . 6 )  and in all subsequent discussion have been dropped. 
Equation ( 2 . 1 )  can be written in terms of the dimensionless velocity components 
as 
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(a/.) (u[R2vRR - rvR + voe + 2uoI+ v[RvR, - ~ o o I >  
= R 3 V , ~ ,  - R2v,, f RVR 2RVoo~ - 4Voo - 4vo - u,goe. ( 2 . 7 )  

The subscripts in ( 2 . 7 )  indicate partial differentiation in the usual manner. 

biharmonic equation in polar co-ordinates: 
Since alv < 1 and R = O ( 1 )  one obtains after substituting (2.6) into ( 2 . 7 )  the 

RYRRRR + 2RY'RRR- R Y R R  +RfR + 2R2fRRoo- 2Rfme + 4fm +feoeo = 0. ( 2 . 8 )  

- R2QRR- RCR- f [RfeQR- gRfRce, (2-9) 

Substitution of ( 2 . 5 )  and ( 2 . 6 )  into ( 2 . 3 )  yields 

where [ = alD. 
We seek solutions of ( 2 . 8 )  and ( 2 . 9 )  subject to the boundary conditions that 

the solutions are symmetric about 8 = 0, the tangential velocity component 
vanishes a t  the outer membrane8 = k &rand that the mass flux of water crossing 
this boundary is proportional to the osmotic driving force. This latter condition 
is written in dimensional terms as 

pw 
V I L  = - [C - Qolg,. 

vl&n = -R[C- 114,. ( 2 . 1 0 )  

P 

'On using the definitions in ( 2 . 4 )  and dropping asterisks this becomes 

A compatability condition, defining membrane semi-permeability, must also be 
imposed on the concentration gradient aC/a8 and the water flux v at the outer 
membrane so that the net solute flux due to convection and diffusion is zero. 
The diffusional flux of solute J, in the 8 direction is assumed to be linearly related 
to the concentration gradient: 

( 2 . 1 1 )  

When the sum of ( 2 . 1 1 )  and the convective solute flux produced by the velocity v 
in ( 2 . 1 0 )  is equated to zero, one obtains 

(2 .12)  

Boundary conditions (2 .10)  and ( 2 . 1 2 )  do not by themselves uniquely determine 
the far-field velocity and concentration solutions for an isolated jet. As one 
might anticipate, some of the arbitrary constants of integration are left un- 
specified. These constants must be determined by matching with a near-field 
solution which satisfies appropriate boundary conditions at the channel exit 
as the near-field radial co-ordinate approaches infinity or R approaches zero. 
Similarly, if one were considering the interaction between adjacent jets on the 
length scale I ,  one would need to ma.tch again, as R approaches infinity, to 
determine the unknown constants that would appear in the solution for this 
next larger length scale. The locally valid series solutions which we shall now 
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construct to describe the behaviour on the length scale E,  however, are not 
suitable for matching with a larger length scale solution since they are only valid 
in the range 0 < R < 1 and do not apply as R approaches infinity. 

The difficulty in solving (2.8) and (2.9) arises primarily through the coupling 
introduced in the boundary condition (2.10). We therefore formulate the solutions 
for the stream function and solute concentration as co-ordinate expansions in R ,  
where the zeroth-order solutions are those for which this boundary condition is 
homogeneous. 

We assume that 
f = f(0)+Rf(l)+O(R2), 

C = C(O) + RC(') + O(R2), 

(2.1 3 a) 

(2.13 b) 

where f (i) and Cci) are functions of 8 only. 

in R yields to zeroth order 

To first order in R 

Substitution of (2.13a, b) into (2.8) and (2.9) and equating terms of like order 

4f# + f@eB = 0, C# = 0. (2.14a, b) 

f& + 2 f +f(1) = 0, ( 2 . 1 5 ~ )  

CCS + cgy - &wfp + tf (1) ego) = 0. (2.15 b) 

With a similar substitution into the boundary conditions (2. lo), v = 0 to zeroth 
order in R and (2.12) produces a homogeneous boundary condition on CP). 

f ( l ) [ e=an  = [c(O)- lIe=hm, 

To first order in R equations (2.10) and (2.12) become 

(2.16 a) 

(2.16b) 

The solution of (2.14a) satisfying the condition of symmetry at 0 = 0 and no 
slip at 6' = $n is equivalent to the Stokes jet solution with radial streamlines as 
obtained by Birkhoff & Zarantonello (1957). In the variables defined by (2.4)) 
this solution becomes 

f (0)  = +Bl(sin 20 -t- 20), (2.17a) 

where B1 is a constant representing the channel source strength. The solution of 
(2.14 b) satisfying the zeroth-order approximation to (2.12) and the symmetry 
condition is 

2, CCO) = p (2.17 b) 

where p 2  is a constant to be determined by matching with the near-field solution. 
A first-order correction to the streamline pattern is produced by the passive 
water movement across the outer membrane and is obtained from ( 2 . 1 5 ~ )  after 
applying (2.16 a) and the symmetry and no-slip boundary conditions: 

f (1) = (PB - 1) sin 0. (2.18) 

When results (2.17a) b) and (2.18) are substituted into (2.15b) the governing 
equation for the first-order correction to the uniform concentration field becomes 

(2.19) Cby + [( 1 - &!?I) - cos 201 C(l) = 0. 
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This is the Mathieu equation and since 5 < 1 it can be solved by a small para- 
meter expansion of the form 
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0 1 )  = c, + 5p1c2 + 0(5p,)2. (2 .20 )  

On substituting (2.20) into (2.19) and equating like terms in (p,, 
c; + c, = 0, 

c; + c, = (1 + cos 28) c,. 
(2.21) 

(2.22) 

When the even solutions to (2.21)and (2.22) are substitutedinto (2.20) one obtains 

C(l) = A , c o s B + ~ ~ , [ A , c o s 8 + ~ A , 8 s i n 8 - ~ A , c o s 3 8 ] + O ( ~ ~ , ) 2 ,  (2.23) 

where A ,  and A, are constants of integration. These are evaluated by taking the 
derivative of ( 2 . 2 3 )  with respect to 0, setting the result equal to the right-hand 
side of (2.16b) and equating terms in like powers of 5. The first-order solution for 
the conceiitration is then found to be 

C(1) = gp2(p2 - I)  cos 8. (2.24) 

Substitution of (2.17a) and (2.18) into (2.13a), and of (2.17b) and (2.24) into 

(2.25a) 

(2.25 b )  

One observes in (2.25a, b )  that the passive water movement across the outer 
membrane produces a first-order correction of order R to the streamline pattern 
but only a higher order correction, of O(CR), to  the concentration field. 

As already mentioned the solution (2.25a) for the far-field velocity approaches 
that for a two-dimensional Stokes jet from a point source as R approaches zero. 
A near-field velocity solution is therefore required which (i) behaves like the 
leading term in (2.25a) as the near-field radial co-ordinate becomes infinite, 
(ii) satisfies a Poiseuille parabolic velocity profile a t  the channel exit for 

(2.13 b )  yields finally 

f = +P,(sin 28 + 28) + R(P, - 1) sin 8 + O(R2), 

c = p,+R[5p,(p2- 1)cos8+0(c2) ]+O(~2) .  

-+h 6 IJ 6 +h 

and (iii) to lowest order in the expansioii parameter h/k (see next section) obeys 
the usual zero-velocity boundary condition a t  the membrane surface in the 
near field. A solution to the Stokes flow equation (2.8) meeting all these re- 
quirements is given in Forste (1963). This result expressed in terms of dimension- 
less rectangular Cartesian velocity components is 

(2.26a) 

where we have defined the dimensionless variables 
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If one now matches the x and y velocity components obtained from ( 2 . 2 5 a ) ,  
see equation ( 4 . 3 ) ,  with the solution ( 2 . 2 6 )  as 2 and approach infinity one 

finds that p1 = 1/7L ( 2 . 2 7 )  

It is evident that the far-field concentration solution (2.25b) cannot satisfy 
an arbitrary initial concentration distribution a t  the channel exit. Thus one 
seeks a near-field solution for the concentration which satisfies appropriate initial 
conditions at the exit and which can be matched with the far-field solution in the 
limit as R approaches zero and the near-field radial co-ordinate approaches 
infinity. This solution and matching for the near-field concentration is con- 
siderably more complicated than that for the near-field velocity and is described 
separately in the next section. 

3. Near-field concentration solution 
The velocity and concentration distributions in the near field obey the govern 

ing equations ( 2 . 8 )  and ( 2 . 3 )  subject to boundary conditions (2 .10)  and ( 2 . 1 2 )  
and to initial conditions at the channel exit. In  addition, the near-field solutions 
for the velocity and concentration must behave like (2.25a, b)  in the limit as the 
stretched near-field radial co-ordinate 

r R  
r"=T&=h/2k 

approaches infinity and R approaches zero, or more exactly, values of O(h/lc). 
If one were now to express the governing equations and boundary conditions in 
terms of the stretched near-field radial co-ordinate and systematically construct 
solutions as power series in the small parameter hlk, one would find that the 
boundary condition ( 2 . 1 0 )  is homogeneous in the near field to O(h/k)  (see equation 
( 3 . 5 ) )  and therefore that the near-field solution for the velocity ( 2 . 2 6 )  is valid 
to this order. Furthermore, if this representation for the near-field velocity were 
used in the solute conservation equation ( 2 . 3 )  the convective terms would be 
accurately described to  O(hLJk). The difficulty in proceeding in this manner is 
that ( 2 . 3 ) ,  although linearized, is very difficult to solve because of the complex 
spatial dependence of the coefficients in the convective term. 

We proceed, therefore, by introducing an approximate Oseen-type simplifica- 
tion for the convective term in ( 2 . 3 )  in the near field. To this end we shall simplify 
( 2 . 3 )  by using a near-field representation of the far-field velocity solution ( 2 . 2 5 a )  
as the near-field convective velocity. This velocity field provides an accurate 
representation for ( 2 . 3 )  for largevalues of theinner length scale and a qualitatively 
reasonable approximation as one approaches the exit region, where the approxi- 
mate linearizing velocity reduces to that of a Stokes jet from a point source. 
One anticipates, therefore, that the resulting solution for the solute concentration 
field will provide a reasonable but not quantitatively accurate representation 
of the mixing process in the entire near field. Equations ( 2 . 2 5 a ,  b),  when expressed 
in terms of the stretched near-field co-ordinate, become 

PI h r  
2 k 2  

f = -(sin 28+ 26) + - -(p2 - 1) sin0 + 0 ( 3 . 2 a )  
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( 3 . 2 b )  

where the asterisks on r have been dropped. Equation ( 3 . 2 a )  is our Oseen approxi- 
mation for the velocity in the convective term in ( 2 . 3 ) )  while ( 3 . 2 b )  gives the 
behaviour of the far-field concentration in the region of overlapping validity. 
In order to match (3 .2  b )  with the near-field concentration solution, we formulate 
the latter as a double asymptotic expansion in integral powers of hlE and 6. We 
shall consider this asymptotic expansion to be a proper representation of the 
near field if matching can be accomplished and if boundary conditions can be 
satisfied to  at least the order of approximation associated with the assumed 
near-field streamline pattern in ( 3 . 2 a ) .  

We let 

where 

c= co+~c~+(~)2c2+o[(;)3]l. k 

( 3 . 3 )  

The ordering of the terms in ( 3 . 3 )  is, according to the magnitudes given in 5 1, 

h 

On using ( 3 . 1 ) )  ( 3 . 2 a )  and the remaining dimensionless variables defined in 
( 2 . 4 ) ,  the solute conservation equation ( 2 . 3 ) ,  the boundary conditions ( 2 . 1 0 )  and 
(2 .12)  for the near field become respectively 

- r2CTT - rC, - COO + &fo C, - [ frCe = 0, ( 3 . 4 )  

If we define the domain of the near field as that bounded by in b 8 2 - Bn and 
r 2 1 ,  we can avoid the difficulty associated with solving this boundary-value 
problem with mixed boundary conditions for concentration along the plane x = 0. 
Condition ( 3 . 5 )  shows, as mentioned previously, that the no-slip boundary con- 
dition on which ( 2 . 2 6 )  is based is valid to  O(h/k) in the near field. For the con- 
centration we require, in addition to ( 3 . 6 ) ,  that C behave as ( 3 . 2 b )  for large r ,  
that G = g(0) be an arbitrary but even function on r = 1 and that the first term 
in ( 3 . 2 a )  account for the total volumetric flow emerging from the channel. In  
dimensionless form, the latter condition is satisfied by 

( 3 . 7 )  
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On integrating (3.7) one finds that 
p1 = q7r. 

Substitution of (3.3) into (3.4) and (3.6) yields, after equating terms in like powers 
of h/k and E,  the equations and boundary conditions to be satisfied by the un- 
known functions Cii in (3.3). 

To order unity v2coo = 0, COO[ &gn = 0, ( 3 . 9 ~ )  b )  

We also require that the initial condition on r = 1 be satisfied identically to 
where V2 is the Laplacian in polar co-ordinates. 

first order. That is 

The even solution to ( 3 . 9 ~ ~ )  satisfying (3.9b) c )  and the condition of boundedness 

(3.9c) cool,=l = g ( 0  

is QI 

Coo = Aoo + F'0,0r2" cos 2n8, ( 3 . 9 4  
n=l 

where Aoo and F'"," are the Fourier coefficients 

The solutions of order (h/k)m for m = 1,2,  . . .) satisfy Laplace's equation and 
homogeneous boundary conditions on 8 = irr and r = 1. Therefore 

= (720 = CmO = 0. (3.10) 

According to (3.10)) one does not expect to find terms of order R" appearing in 
the far-field concentration expansion. R will appear only as a mixed product with 
the parameter g. 

To order 6 one must solve the equation 

V2C01 = rP,(cos 28 + 1) C;O (3.1 1 a) 

subject to homogeneous boundary and initial conditions. Homogeneous solu- 
tions of ( 3 . 1 1 ~ )  of the form ricosje are not sufficiently general to satisfy the 
boundary and initial conditions. We must add to the series in integral powers of 
r an associated separable solution of order one. This solution is defined by 
a(rjcosjO)/aj. Associated separable solutions of any order n are seen to satisfy 
Laplace's equation since 

[VZ(ri cosj8)] = 0. 

The complete solution to ( X l l a ) ,  using the result of (3.8)) is given by 
m m F O O  

cos (2n - 2) 8 + lnr cos 2n8 , (3.11 b )  1 n n 
cog (2% + 2) 8 - 

2 p n  - 1) 
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where 
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A? = E1?/47~, 

If ( 3 . 9 4 ,  (3.10) and (3.11 b )  are substituted into (3 .3 )  and the resulting series is 
rewritten in terms of the outer co-ordinate R by use of (3.1), a comparison of the 
three leading terms (of order unity, hllc and 5) with the corresponding terms in 
( 2 . 2 5 6 )  yields the matching condition 

p2 = AOO+@q0/4n. (3 .12)  

Results (3 .10)  and (3.12) shows that the functions in (2 .13b)  are in fact power 
series expansions in the parameter 5. 

There is no justification for obtaining solutions of order (h / k ) [  because the 
assumed stream function (3 .2a)  does not satisfy boundary condition (3 .5 )  to 
this order. The final approximate solution has, therefore, not included the higher 
order correct,ions due to the passive water movement across the outer boundary. 

4. Numerical results 
Par-field velocity profiles u, and uy in the directions normal and parallel, 

respectively, to the outer membrane in figure 1 can be derived from ( 2 . 2 5 ~ ~ )  and 
(2.6).  Since in dimensional terms 

u, = U C O S O - V S ~ ~ ~ ,  uU = usinBfvcos0, 

one obtains 011 transformation to rectangular co-ordinates 

These equations are non-dimensionalized by defining the dimensionless variables 

where a and k are as defined in @ J  and 2 .  
Substitution of (4.2) into (4.1) yields 

(4.3 a, b )  

The normalvelocity profiles of ( 4 . 3 a )  are plotted in figure 3 as curves of u,, - (P2 - 1) 
versus < a t  constant distances 7 away from the outer boundary. The scales in- 
dicated on the axes of figure 3 apply directly to the dimensionless co-ordinate 
distances 7 and 5. The ordinate scale also represents & of the magnitude of 
ur7 - (p2 - 1) when the profile heights are measured with respect to the dotted 
reference lines for 7 = 0.05,O. 1,0.2,0.5 and 1-0. The profiles of vsll for non-isotonic 
(/I2 + 1) channel effluxes are simply those shown in figure 3 with a shift up or 
down of magnitude P2- 1. For a hypotonic effluent (p2 < 1) one observes from 
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[u?/ -&- I)] x lo-' tl 

tl= 1.0 

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 5 
FIGURE 3. Variation in the far-field velocity profile u - (pz - 1 )  with increasing distance 
from the outer boundary. Ordinate scaling represents units of dimensionless distance and 
units of [uv - (p, - 11) x 10-l. 

7 .  

B'IGURE 4. Variation in the far-field velocity profile u1 with increasing distance from the 
outer boundary. Ordinate scaling represents units of dimensionless distance and units of 
"5  x 10-1. 
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0 =o 

o=:n  

-0.8 

FIGURE 5. Dimensionless polar plot of the streamline pattern in the exit mixing region of 
epithelia with (a) hypertonic and ( b )  hypotonic effluent. The radial co-ordinates are 
R(P,- 1) and R(l-/&) respectively. 
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( 4 . 3 ~ )  that a stagnation point exists along the channel centre-line (5 = 0) at 
a distance 7 = 2/7r( 1 - p2) from the channel exit. 

The velocity profiles of (4.3b) are plotted in figure 4 with distance and velocity 
scales identical to those of figure 3. 

The far-field streamline patterns resulting from different levels of exit con- 
centration are most conveniently represented as streamlines in a polar co- 
ordinate system whose radial dimension is the quantity R(P2 - 1) or R( 1 -p2) for 
hypertonic (i.e. p2 > 1) or hypotonic (p2 < 1) channel secretions respectively. 
Equation (2.25a), using (2.27), is plotted in this manner in figures 5(a) and (b). 
One observes that the radial streamline pattern ensues as R approaches zero or 
as the channel secretion approaches isotonicity (p2 = 1). In  these limits the 
streamlines forf = + 0.5 become tangential to the boundary 19 = f 477. 

For a hypotonic secretion, the streamline pattern in figure 5 (b )  clearly shows 
how reabsorption of fluid into the cell interior across the outer membrane requires 
that fluid be drawn from the channel exit as well as from the far field. The curved 
streamline f = 0 delineates these two regions. The stagnation point occurs at 

The radial length scale in figure 5 also represents, to first order, the ratio of the 
volumetric flow crossing the outer boundary to the channel source strength. 
In dimensionless terms 

6 = 0, R(1-/92) = ZIT. 

Substitution of ( 2 . 2 5 ~ )  and (2.27) into (4.4) yields on integration 

Q,/u = R(p2 - 1) + . . ., (4.5) 

where the positive direction of Q, is taken as the positive x direction in figure 5 (a).  
Equation (2.25%) may be represented by lines of constant concentration ratio 

C/P2 in a polar co-ordinate system with radial length scale RtI (p2 - 1) I .  Then 
from (2.253) 

Lines of constant concentration ratio in (4.6) lie parallel with the outer membrane, 
which has a concentration ratio of 1. With p2 greater or less than unity, the 
concentration ratio increases or decreases, respectively, with a uniform normal 
gradient of & 1 using the above length scale. 

The equilibration which is achieved in the near field by a non-homogeneous 
exit solute concentration distribution is readily demonstrated by assuming an 
exit distribution of the form 

(4.7) 
where C, and C, are the dimensionless concentrations a t  the channel centre-line 
and wall respectively. 

Substitution of (4.7) into (3.3), (3.96, d, e) ,  (3.11b) and (3.12) yields to order 

c/p2 = 1+B~(p2-1)c0s8+.. . .  (4.6) 

C(r = 1,8) = CW+(Cm-Cw)cos0, 

c-c, 2 4 4 -- - -+-r2 COB 20 - -V-~COS 48 cm-cw 77 3n 1577 

+ ...( - 1yi-1 
4 

(4n2 - 1) 77 
r-2n cos (2ne) + O ( 0 .  
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i n  i n  0 - 1  4 8  -; 71 
0 

FIGURE 6. Variation in the near-field concentration distribution with 
increasing radial distance from the channel exit. 

The variation in (C - Cw)/(Cm - Cw) along arcs of constant radius, as represented 
by (4.8), is shown in figure6.At a radial distance of r = 4-0, the non-homogeneous 
concentration profile has come to within 5 yo of the uniform distribution which is 
achieved at  large values of the near-field co-ordinate. 

5. Conclusions 
The development of theories for biological jets presents the fluid dynamicist 

with new and relevant areas for research. Several classes of problems can be 
identified according to the relative magnitudes of the dimensionless groups which 
characterize the flow. Most epithelia appear to transport fluids at rates which 
make the dimensionless groups a/v and a/D much less than unity. Biological 
jets are, then, low Reynolds number jets in which the length scales of interest are 
h, pa/PwCo, 1 and a radius of curvature 92 of the epithelial surface. 

For a relatively impermeable outer cell membrane, pu/P,Co becomes much 
larger than the channel spacing I and additional transport across this membrane 
can be neglected. The problem then involves the study of an array of jets emerging 
into the outer bathing solution. Work on a solution for this model has been 
started by the authors. New mathematical techniques are needed for the case 
in which pa/PwCo is of the order of the channel height. The work of Forste (1963) 
may, however, provide a basis for solution. 

Since the epithelial tissue forms a closed surface which lines the various organs, 
the choice of a co-ordinate system most cornpatable with the physiological 
configuration is related to the magnitude of the dimensionless parameter 9 / L ,  
where L is one of the characteristic length scales described above. For 921L B 1 
the model is best formulated as a half-plane in either rectangular or polar co- 
ordinates. For the gall bladder, as presented herein, 9 / L  > 1 for each of the 
three characteristic length scales. In mammelian renal collecting tubules, see 
Grantham (1971), 9 / L  = O(1) when L represents the extracellular channel 
spacing. In this case a formulation in axisymmetric co-ordinates is called for. 
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The transport processes occurring in renal tubules and in the malpighian 
tubules and rectal lumen of insect excretory systems, see Wall (1971) and 
Oschman & Berridge (1971), present problems with non-stagnant bathing solu- 
tions. In  organs such as these, the epithelia line the lumenal surface of long 
cylindrical tubes which are closed at  one end. The absorption or secretion of 
fluids then occurs across epithelia which are bounded on one side by the serosal 
fluid and on the lumenal side by a bathing solution which has unidirectional flow 
velocities. The co-ordinate system chosen to represent this model again depends 
on 921L. 

The work described in this study was performed in partial fulfilment of the 
requirements for the Ph.D. degree from the School of Engineering of the City 
College of the City University of New York and is contained in the Ph.D. thesis 
of J. Richard Goldgraben (1972). J. R. Goldgraben was partially supported by an 
NSF Science Faculty Fellowship. The paper was also presented by S. Weinbaum 
at the Thirteenth International Congress in Theoretical and Applied Mechanics 
at  Moscow University, 20-26 August 1972. S. Weinbaum was partially supported 
in this work by a CUNY Faculty Research Award, 
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